Math�matiques : contr�le continu premi�re technologique 20 / 01 / 2020.

En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de Cookies vous proposant des publicit�s adapt�es � vos centres d’int�r�ts.

.


.....



Exercice 2
.
5 points.
En 2019 le chiffre d'affaires d'un restaurant gastronomique �tait de 300 000 €. On mod�lise ce chiffre pendant l'ann�e 2019 +n par le n-i�me terme de la suite (un) d�finie par : u0 = 300 et un+1=1,2 un -50 ( en milliers d'euros).
1. Montrer que selon ce mod�le, le chiffre d'affaires sera de 310 000 € en 2020.
u1 = 1,2 x u0-50 =1,2 x 300-50 =310 milliers d'euros ( 310 000 € )
2. Calculer u2 et interpr�ter le r�sultat.
u2 = 1,2 x u1-50 =1,2 x 310-50 =322 milliers d'euros ( 322 000 € )
3. Faire une conjecture sur le sens de variations de la suite. Expliquer la d�marche.
un+1 - un =1,2 un -50 -un =0,2 un -50.
Or un > u0 ; 0,2 un > 50 ;
un+1 - un >0 ; un+1 > un .
La suite est croissante.
Ou bien : u0 = 300 ; u1 = 310 ; u2 = 322 ; u3 = 336,4.
4. Montrer que cette suite n'est ni arithm�tique, ni g�om�trique.
un+1 - un =0,2 un -50.
un+1 - un n'est pas �gale � une constaante : la suite n'est pas arithm�tique.
un+1 / un =0,2 -50 / un.
un+1 / un n'est pas constante : la suite n'est pas g�om�trique.
5. Si on ex�cute l'algorithme ci-dessous, � la fin k = 9. Comment peut-on interpr�ter ce r�sultat ?
u = 300
k=0
while u < 500
u=u*1,2u-50
k=k+1.
k = 9 ( ann�e 2008), le chiffre d'affaires d�passe 500 000 €.
.


.. ...
. .


Exercice 3 ( 5 points).
Soit f la fonction d�finie sur R par f(x) = -2x2+6x+8.
1. Montrer que f(x) = -2(x+1)(x-4).
On d�veloppe : -2 ( x2+x-4x-4) = -2(x2-3x-4) = -
2x2+6x+8.
2. R�soudre l'�quation f(x) = 0.
x+1=0 ; x = -1 ; x-4=0 ; x = 4.
3. Faire un sch�ma de l'allure de la courbe repr�sentative de f.

4. Expliquer pourquoi le maximum est atteint pour x = 1,5.
Le maximum est atteint pour x = -b / (2a) soit x = -6 / (2 *(-2)) = 6 / 4 = 1,5.
l'axe de sym�trie de la courbe est la droite d'�quation x = 1,5.
5. Dresser le tableau de variation de f sur l'intervalle [-1 ; 4].


.
.
 

Exercice 4. ( 5 points).
Un fabricant d'ampoules poss�de deux machines A et B. La machine A fournit 65 % de la production. Certaines ampoules pr�sentent un d�faut :
8 % � la sortie de la machine A et 4 % � la sortie de la machine B pr�sentent un d�faut.
On produit 15 000 ampoules par jour.
1. Combien d'ampoules proviennent de chaque machine ?
Machine A : 15 000 x0,65 =9 750.
Machine B : 15 000-9 750 =5 250.
2. Compl�ter le tableau suivant :

Machine A
Machine B
 Total
Avec d�faut
780
5250 x 0,04=210
990
Sans d�faut
8970
5040
14 010
Total
9750
5 250
15000
3. Calculer la fr�quence en pourcentage des ampoules ayant un d�faut.
990 / 15 000 x100 = 6,6 %.
4. On d�finit les �v�nements :
A : " l'ampoule provient de la machine A".
D : " l'ampoule pr�sente un d�faut".
D�terminer A n D.
780 / 15000 =0,052 (5,2 %).
Ou bien 0,65 x 0,08 =0,052.

..





.



  

menu